EFFECT OF m⁷G⁵ppp⁵Nm ON THE RABBIT GLOBIN SYNTHESIS

Haruo SUZUKI

Department of Genetics, Institute for Developmental Research, Aichi Prefectural Colony, Kasugai, Aichi 480-03, Japan

Received 12 April 1977

1. Introduction

It has been shown that the 7-methyl guanosine(m^7G) at the 5'-end of mRNAs is required for translation[1-3] and m^7G^5 'p inhibits the translation of rabbit globin mRNAs in the wheat germ and Artemia salina systems [4,5]. The previous work [6] showed that m^7G^5 'p preferentially inhibited the α -globin synthesis in the rabbit reticulocyte lysate system.

The present work reports the effect of concentrations of $m^7G^{5'}ppp^{5'}Am$, $m^7G^{5'}ppp^{5'}Cm$, $m^7G^{5'}ppp^{5'}Gm$ and $m^7G^{5'}ppp^{5'}Um$ on the α and β -globin synthesis in the rabbit reticulocyte lysate system. These dinucleotides preferentially inhibited the α -globin synthesis and the inhibition was shown to be at the level of initiation. The data obtained with these nucleotides were very similar to those with $m^7G^{5'}p$ [6], but the 50% inhibition was observed at about 6 times lower concentrations than $m^7G^{5'}p$.

2. Materials and methods

2.1. Materials

Rabbit reticulocyte lysate and [35S]Met-tRNA_f^{Met} were the same preparations that were used previously [6]. m⁷G⁵/ppp⁵'Am, m⁷G⁵/ppp⁵'Cm, m⁷G⁵/ppp⁵'Gm, m⁷G⁵/ppp⁵'Um were purchased from P-L Biochemicals. Concentrations of these dinucleotides were determined by measuring the absorbance at 260 nm. The extinction coefficients of these nucleotides were assumed to be 22.8 for m⁷G⁵/ppp⁵'Am, 16.6 for m⁷G⁵/ppp⁵'Cm, 20.2 for m⁷G⁵/ppp⁵'Gm and 18.5 mM⁻¹ cm⁻¹ for m⁷G⁵/ppp⁵' Um at 260 nm in deionized water. L [U-¹⁴C] Leucine (308 mCi/mmol) and Aquasol-2 were from New England Nuclear.

2.2. Amino acid incorporation experiments

Incubation conditions were detailed previously [6]. Aliquots of 20 μ l lysate were incubated with 0.125 μ Ci [14 C]leucine at various concentrations of m 7 G 57 ppp 57 Nm in the 50 μ l incubation mixture. Product analyses were done for the samples obtained after 30 min incubation at 30°C. The 14 C-incorporations into α - and β -globin chains were determined as described [6,7].

2.3. Effect of m⁷G⁵ppp⁵Nm on the elongation and/or release of nascent chains

Experimental conditions were detailed previously [6]. Nascent chains labelled with [14C] leucine in the postribosomal supernatants were released at various concentrations of m⁷G⁵/ppp⁵ Nm in the incubation mixture for 4 min at 30°C. After incubation, ¹⁴C-radioactivities retained on the ribosomal pellets were determined as described [6].

2.4. Effect of $m^7 G^{5}ppp^{5}Nm$ on the initiation complex formation

Experimental conditions were detailed previously [6]. Aliquots of 40 μ l lysate were incubated with various concentrations of m⁷G⁵ppp⁵Nm and with [³⁵S]Met-tRNA_f^{Met} (2.7 × 10⁵ cpm, 1.9 × 10⁶ cpm/ A_{260}) in 100 μ l incubation mixture for 5 min at 30°C. After incubation, ³⁵S-radioactivities at 40 S and 80 S ribosome regions were analyzed as described [6].

3. Results

3.1. Effect of $m^7G^{5'}ppp^{5'}Nm$ on [^{14}C]leucine incorporation into α and β -globin chains

Rabbit reticulocyte lysate was incubated at various concentrations of m⁷G⁵/ppp⁵Nm as described in

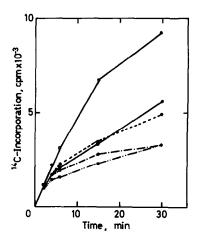


Fig. 1. Effect of time on the incorporation of [14C]leucine into TCA-insoluble materials at a given concentration of $m^7G^5ppp^5Nm$. Experiments were done as described [6]. The total volume of incubation mixture was 50 μ l. At a given time, 5 μ l incubation mixture were taken to measure the 14C-incorporation into TCA-insoluble materials. (\circ —— \circ) Without added $m^7G^5ppp^5Nm$, (\bullet —— \bullet) with 230 μ M $m^7G^5ppp^5Nm$, (\bullet —— \bullet) with 390 μ M $m^7G^5ppp^5Cm$, (\bullet —— \bullet) with 250 μ M $m^7G^5ppp^5Um$.

Materials and methods [6]. Aliquots of 5 µl incubation mixture were taken at a given time and analyzed for [¹⁴C]leucine incorporation into hot TCA-insoluble materials as described [7]. Figure 1 shows the effect of time on the [¹⁴C]leucine incorporation. During the initial 15 min, the ¹⁴C-incorporation increased almost linearly with time without added m⁷G⁵ppp⁵Nm, but not with m⁷G⁵ppp⁵Nm.

Figure 2 shows the effect of concentrations of $m^7G^{5'}ppp^{5'}Nm$ on the ^{14}C -incorporation into α - and β -globin chains. The total ^{14}C -incorporation did not decrease at relatively low concentrations of $m^7G^{5'}ppp^{5'}Nm$. However, the synthesis of α -chain was perferentially inhibited and the synthesis of β -chain was stimulated. These data are very similar to those with $m^7G^{5'}p$. However, the 50% inhibition of α -chain synthesis was observed at 0.22 mM $m^7G^{5'}ppp^{5'}Nm$ and 1.25 mM $m^7G^{5'}p$ [6]. Interestingly, the base change in the second position of these dinucleotides showed same results in the concentration dependency of the inhibition (fig. 2).

3.2. Effect of m⁷G⁵ppp⁵Nm on the elongation and/or release of nascent chains

Ribosomes with labelled nascent chains were released

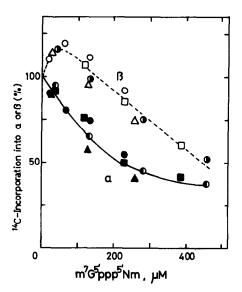


Fig. 2. Effect of concentrations of $m^7G^{5'}ppp^{5'}Nm$ on the incorporation of $[^{14}C]$ leucine into α - $(\bullet, \bullet, A, \Phi)$ and β -globin chains $(\circ, \Box, \triangle, \Phi)$. The ^{14}C -incorporation into α - and β -globin chains were expressed as a percentage of the ^{14}C -incorporation into each chain without added $m^7G^{5'}ppp^{5'}Nm$. Experiments were done as described [6]. (\bullet, \circ) With $m^7G^{5'}ppp^{5'}Mm$, (A, \triangle) with $m^7G^{5'}ppp^{5'}Cm$, (\bullet, \Box) with $m^7G^{5'}ppp^{5'}Cm$, (\bullet, \Box) with $m^7G^{5'}ppp^{5'}Cm$, (\bullet, \Box)

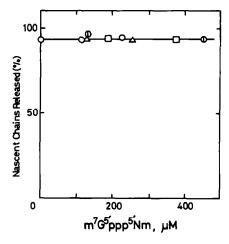


Fig. 3. Effect of concentrations of $m^7G^5ppp^5Nm$ on the elongation and/or release of nascent chains. Ribosomes with ^{14}C -labelled nascent chains in the 40 μ l postribosomal supernatants were released at various concentrations of $m^7G^5ppp^5Nm$. The total volume of the incubation mixture was 100 μ l. The ribosomes in 40 μ l postribosomal supernatants had the radioactivity of 8700 cpm without incubation. Nascent chains were released with $m^7G^5ppp^5Nm$ (\circ), $m^7G^5ppp^5Nm$ (\circ), $m^7G^5ppp^5Nm$ (\circ) and $m^7G^5ppp^5Nm$ (\circ).

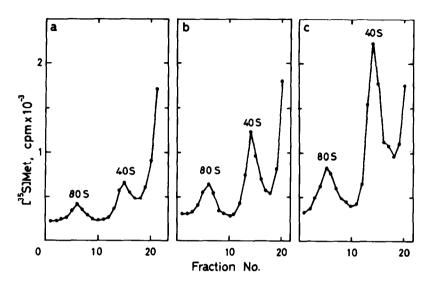


Fig.4. Effect of m⁷G⁵ppp ⁵Gm on the initiation complex formation. Aliquots of 40 μ l lysate were incubated with 0(a), 26(b) and 260 μ M m⁷G⁵ppp ⁵Gm(c) in 100 μ l incubation mixture for 5 min at 30°C. Experimental conditions were detailed previously [6].

at various concentrations of m⁷G⁵/ppp⁵Nm as described in Materials and methods. As shown in fig.3, almost 90% of the nascent chains was released with and without added m⁷G⁵/ppp⁵Nm. This means that m⁷G⁵/ppp⁵Nm does not inhibit the elongation and/or release of nascent chains.

3.3. Effect of $m^7G^{5'}ppp^{5'}Nm$ on the formation of both a 40 S/Met-tRNA $_f^{Met}$ complex and an 80 S/Met-tRNA $_f^{Met}$ complex

Aliquots of 40 µl lysate were incubated with various concentrations of m⁷G⁵ppp⁵Nm with [³⁵S]MettRNA as described in Materials and methods. Figure 4 shows the sedimentation pattern obtained with m⁷G⁵'ppp⁵'Gm. Similar data were obtained with m⁷G⁵'ppp⁵'Cm, m⁷G⁵'ppp⁵'Gm and m⁷G⁵'ppp⁵'Um. To see the effect of concentrations of these dinucleotides on the formation of the initiation complexes, the 35S-radioactivities at 40 S and 80 S ribosome regions were determined by calculating the total counts in the corresponding peaks (fig.4). As fig.5 shows, the 35S-radioactivities in both 40 S and 80 S ribosome regions increased at relatively low concentrations of m⁷G⁵'ppp⁵'Nm. But the ³⁵S-radioactivities at 80 S region did not increase at relatively high concentrations of m⁷G⁵ppp⁵Nm, while those in 40 S region increased. The data in fig.5 were very similar to those

with m⁷G⁵p [6]. As in the case of fig.2, the concentration dependency of the initiation complex formation was almost the same for these dinucleotides.

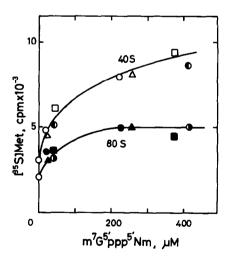


Fig. 5. Effect of concentrations of $m^7G^{5'}ppp^{5'}Nm$ on the initiation complex formation. Experiments were done as in fig. 4. ³⁵S-Radioactivities in 40 S and 80 S ribosome regions were determined by calculating the total counts in the corresponding peaks. Experiments with $m^7G^{5'}ppp^{5'}Am(\circ, \bullet)$, $m^7G^{5'}ppp^{5'}Cm(\neg, \bullet)$, $m^7G^{5'}ppp^{5'}Cm(\neg, \bullet)$, $m^7G^{5'}ppp^{5'}Um(\bullet, \bullet)$. Radioactivities in 40 S $(\circ, \neg, \triangle, \bullet)$ and 80 S ribosome regions. $(\bullet, \bullet, \triangle, \bullet)$.

4. Discussion

The present work showed that four dinucleotides, $m^7G^5'ppp^5'Am$, $m^7G^5'ppp^5'Cm$, $m^7G^5'ppp^5'Gm$ and $m^7G^5'ppp^5'Um$ inhibited rabbit globin synthesis in the rabbit reticulocyte lysate system. The inhibition was shown to be at the level of initiation and these dinucleotides preferentially inhibited the synthesis of α -globin chain.

The data obtained with m⁷G⁵'ppp⁵Nm (figs 2,3,5) were very similar to those with m⁷G⁵'p [6], therefore the mechanism proposed for the inhibition with m⁷G⁵'p can be applicable for the inhibition with these dinucleotides. In this case, the affinity of m⁷G⁵'ppp⁵Nm with 40 S/Met-tRNA_f^{Met} must be greater than that of m⁷G⁵'p, since the 50% inhibition was observed with these dinucleotides (fig. 2) at about 6 times lower concentrations than m⁷G⁵'p [6].

Filipowicz et al. [5] reported the presence of a protein(s) in Artemia salina ribosomal wash that binds with m⁷G⁵'ppp⁵'N. Shafritz et al. [8] reported that m⁷G⁵'p inhibits the interaction of certain mRNAs with purified reticulocyte initiation factor, IF-M₃. The data obtained with m⁷G⁵'p [6] and with m⁷G⁵'ppp⁵'Nm (the present data) can also be explained by assuming that these nucleotides bind with IF-M₃ and these nucleotides on IF-M₃ can be replaced by β-globin mRNA, but not by α-mRNA.

Several groups [4,5,8-12] reported the inhibition of translation by 'cap' analogs and showed that both the 7-methyl group and 5'-phosphate groups of m⁷G^{5'}ppp^{5'}N are essential for the inhibition. In addition to these, the present work suggests that the kind of the second base of the dinucleotide, m⁷G^{5'}ppp^{5'}Nm, is not essential for the inhibition, since the data obtained with four kinds of dinucleotides were almost the same (fig.2). The data obtained with m⁷G^{5'}ppp^{5'}Nm suggest that the different affinity between α and β -globin mRNAs with 40 S/MettRNA_f^{Met}, initiation factor(s) or other rate-limiting

components of initiation [13-16] must be due to the difference of nucleotide base at an internal position(s) of the mRNAs.

Acknowledgements

I am grateful to Drs Y. Hayashi and N. Fujiki of our Department for their encouragement during the course of the present work.

References

- [1] Both, G. W., Banerjee, A. K. and Shatkin, A. J. (1975) Proc. Natl. Acad. Sci. USA 72, 1189-1193.
- [2] Muthukrishnan, S., Both, G. W., Furuichi, Y. and Shatkin, A. J. (1975) Nature 255, 33-37.
- [3] Muthukrishnan, S., Filipowicz, W., Sierra, J. M., Both, G. W., Shatkin, A. J. and Ochoa, S. (1975) J. Biol. Chem. 250, 9336-9341.
- [4] Hickey, E. D., Weber, L. A. and Baglioni, C. (1976) Proc. Natl. Acad. Sci. USA 73, 19-23.
- [5] Filipowicz, W., Furuichi, Y., Sierra, J. M., Muthukrishnan, S., Shatkin, A. J. and Ochoa, S. (1976) Proc. Natl. Acad. Sci. USA 73, 1559-1563.
- [6] Suzuki, H. (1976) FEBS Lett. 72, 309-313.
- [7] Suzuki, H. and Hayashi, Y. (1975) FEBS Lett. 52, 258-261.
- [8] Shafritz, D. A., Weinstein, J. A., Safer, B., Merrick, W. C., Weber, L. A., Hickey, E. D. and Baglioni, C. (1976) Nature 261, 291-294.
- [9] Weber, L. A., Feman, E. R., Hickey, E. D., Williams, M. C. and Baglioni, C. (1976) J. Biol. Chem. 251, 5657-5662.
- [10] Canaani, D., Revel, M. and Groner, Y. (1976) FEBS Lett. 64, 326-331.
- [11] Groner, Y., Grosfield, H. and Littauer, U. Z. (1976) Eur. J. Biochem. 71, 281-293.
- [12] Hickey, E. D., Weber, L. A., Baglioni, C., Kim, C. H. and Sarma, R. H. (1977) J. Mol. Biol. 109, 173-183.
- [13] Lodish, H. F. (1971) J. Biol. Chem. 243, 7131-7138.
- [14] Lodish, H. F. and Jacobson, M. (1972) J. Biol. Chem. 247, 3622-3629.
- [15] Lodish, H. F. (1974) Nature 251, 385-388.
- [16] Temple, G. and Lodish, H. F. (1975) Biochem. Biophys. Res. Commun. 63, 971-979.